Séminaire du réseau PAYOTE, 3 novembre 2016

FIRETEC, un modèle physique de propagation des feux de forêt

Jean-Luc Dupuy⁽¹⁾, François Pimont⁽¹⁾, Rodman Linn⁽²⁾

¹INRA, Ecologie des Forêts Méditerranéennes, Avignon ²LANL, Earth and Environmental Science Division, Los Alamos

Contexte : gestion et prévention du risque incendie

Efficacité de l'obligation légale de débroussaillement ?

Contexte : gestion et prévention du risque incendie

Gestion forestière

Faut-il favoriser la fermeture du couvert ? Ou fragmenter le paysage ? Ou favoriser certaines espèces ?

Quelle proportion de la surface traiter préventivement ?

Quels peuplements faut-il protéger en priorité (vulnérabilité) ?

Modélisation physique du feu

Principe

- Equations de bilan de matière, de quantité de mouvement et d'énergie pour le gaz et la végétation, couplant l'ensemble des processus physiques
- Résolution numérique au cours du temps dans un domaine spatial discrétisé

Deux modèles aux échelles de la parcelle au petit paysage

WFDS développé au NIST, puis à l'USDA Forest Service

FIRETEC, développé au LANL, et à l'INRA depuis 2005

Les processus physiques de propagation

- Dégradation thermique de la végétation
 - vaporisation de l'eau
 - pyrolyse
 - pilotée par la température
- Inflammation
 - contact de la flamme
- Combustion

- conditionnée par le mélange des produits de pyrolyse et de l'oxygène
- le mélange résulte de phénomènes de transport (notamment turbulence)

• Transferts thermiques

- rayonnement, convection
- conditionnés par la source de chaleur (combustion)
- convection couplée au transport

Les processus physiques de propagation

• Transport et effets aérodynamiques

- le feu crée ou influence les mouvements d'air, en interaction avec le vent, la végétation et la topographie
- l'écoulement transporte de la matière et de la chaleur (advection, turbulence)

Force de flottabilite

Appel d'air créé par le feu

Force d'inertie (vent)

Les processus physiques de propagation

- Transport et transferts thermiques
- Les mouvements d'air influencent
 l'échauffement convectif du combustible
- Des instabilités convectives causent un échauffement intermittent
- Ce mécanisme serait le principal mode de transfert thermique

Finney et al. 2015, PNAS

Modélisation physique du feu : défis

Time Scales

Ensemble couplé de processus physiques complexes

- Combustion
- Dynamique atmosphérique
- Transferts convectifs et radiatifs

Large gamme d'échelles

- flamme (10^{-3} m) au panache (10^{3} m)
- feuille (10^{-3} m) au peuplement (10^{2} m)
- structures turbulentes (10⁻³ m 10³ m)

Conditions initiales et aux limites

- données sur le combustible
- fluctuations du vent

Validation difficile

Ignition scales Fire line or vegetation scales Landscape scales Regional scales Spatial Scales

Modélisation physique du feu : FIRETEC

Conditions de calcul typiques

- Domaines : x,y :300-1200 m, z: 600-1200 m
- Résolution spatiale au sol : 2 x 2 x 1.5 m
- Résolution temporelle : 0.01 s
- Temps calcul d'un feu : 250 32 000 h cpu

Processus résolus explicitement (échelle > maille):

 Advection par l'écoulement moyen des quantités (code atmosphérique compressible HIGRAD)

-Transfert radiatif (Monte-Carlo)

Processus modélisés ou de sous-maille :

- -Mélange et combustion
- -Echanges solide / gaz
- -Turbulence de petite échelle (< maille)

Exemple de processus modélisé :

Combustible solide + Oxygène \rightarrow Produits

Taux de combustion: ω \circ

$$\propto \frac{\rho_f \rho_{O2}}{\tau_c} F(T_s)$$

SOUTH CANYON FIRE REGION

Données d'entrée de FIRETEC

- Vent : profil empirique ou champ 3D par pré-calcul en conditions cycliques
- Topographie : carte d'altitudes
- Combustible : biomasse fine, surface exposée et teneur en eau, dans chaque maille Le Fuel Manager permet de générer les scènes 3D de combustible

Approche à 3 échelles : peuplement, individus, particules.

Modèles de combustibles individuels, générateurs de peuplements

Modélisation physique du feu : FIRETEC

Le modèle fournit une description 3D de l'évolution dans le temps :

- De l'écoulement du mélange gazeux (vitesse, pression, densité)
- Du combustible (quantité, teneur en eau locales)
- Des températures du combustible (solide) et du mélange gazeux
- De la composition du mélange gazeux (combustible, oxygène)

On peut déduire de ces "champs de variables bruts" :

- la vitesse du vent et l'intensité du feu
- la position et le déplacement de l'enveloppe du feu
- Flux, températures, etc.

FIRETEC : vents induits par le feu

FIRETEC : structure des flammes, instabilités convectives

Fuel type	Fuel height	Fuel load (kg/m ²)	FMC ⁽¹⁾ (%)	Fire width (m)	Wind speed (m/s)	Rate of spread (m/s)	
	(m)					FIRETEC	Experiment
Shrubland	0.3	0.5	80	10	2.7 at 2 m	0.08	0.07
France (2)	0.4	0.8	140	10	5.6 at 6 m	0.10	0.07
	0.4	0.8	70	10	5.7 at 6 m	0.12	0.09
Shrubland, Spain ⁽³⁾	0.5	2.2	65	25	2.1 at 2 m	0.039	0.043
Grassland,	0.7	0.7	5	50	3.0 at 2 m	0.7	0.7-0.8
Australia (4)	0.7	0.7	5	50	6.0 at 2 m	2.8	1.8-2.7

FIRETEC : applications

Pimont et al. 2011, AFS

Impact de la fréquence de brûlage dirigé Intensité de feu en fonction du nombre d'années après traitement Communauté Contr Taillis pin/chêne 1500 2000 13100 13800 14800 Tallis éparse 650 900 8100 9300 10500 Garrigue à chêne vert 350 1600 6400 6400 7700 Garrigue à chêne 900 5300 5400 6300 kermès Garrigue à romarin 1500 5800 5900 6000 Prairie 900 900 900 900 900

Cassagne et al. 2010, EM

Simulation de contre-feu

OLD)	Radiant heat flux (kW m ⁻²)			Gas temperature (°C)		
,	d=10 m	d=30 m	d=50 m	d=10 m	d=30 m	d=50 m
Run 1 No slope Cleared fuel-break	25 (28)	8.6 (9.2)	5.5 (5.9)	287 (323)	105 (111)	71 (78)
Run 2 30% slope Cleared fuel-break	31 (35)	12 (13.2)	8.4 (9.1)	329 (404)	110 (130)	59 (70)
Run 3 No slope 10 m-respaced trees	22 (26)	8.3 (8.8)	5.4 (5.9)	280 (336)	108 (120)	68 (75)
Run 4 30% slope 10 m-respaced trees	30 (39)	12 (13)	8.0 (8.9)	345 (422)	113 (143)	63 (70)

Effets du débroussaillement sur les flux (Ol

Effets combinés du vent, de la pente et de la taille du feu sur la vitesse de propagation

Effets combinés du vent, de la pente et de la taille du feu sur la vitesse de propagation

Configuration simple

- ⇒ Effets du vent et de la pente ni multiplicatif, ni additif
- ⇒ Fort effet de la largeur de front par vent faible

Domaine: 320 x 320 x 640 m <u>Vent</u>: 1 et 12 m/s à 10 m <u>Pente</u>: - 40% to 100% <u>Largeur feu</u>: 20 and 50 m

Simulation par vent faible

- Canyon étroit : le feu atteint rapidement les côtés du canyon et monte
- Canyon large : le feu reste plus longtemps dans le canyon, puis monte
 => le feu de flanc en fond de canyon devient feu de tête, avec un front plus large en bas de pente
- Forme en V caractéristique des feux montant une pente sans vent

Simulation par vent faible

Propagation latérale (selon axe y) à partir du milieu du domaine

Par vent faible, les vitesses de montée sont très différentes pour des largeurs de front différentes en bas de pente

Simulation par vent fort

11.

Eclaircies / taille de patches sur les coupures de combustible

Recommandations à dire d'expert (Rigolot et Costa 2000)

Simulations de l'impact de l'éclaircie sur le vent et la propagation du feu

Trois niveaux d'éclaircie et d'agrégation d'arbres

21

Pimont, Dupuy et al. (2011)

Simulation avec 25 % de couvert arboré dans la zone éclaircie

Hétérogénéité des dommages aux arbres

Rôle des structures turbulentes

Conséquences des attaques de scolytes sur les feux

Des conditions de combustible inédites :

- Patrons spatiaux des dommages, variés
- Chute de la teneur en eau la première année
- Aiguilles sèches en cimes plusieurs années (stade rouge)
- Chute des aiguilles au sol (stade gris)

Evolution de la teneur en eau du feuillage (Page 2006)

En France, les pullulations dans les zones à risque incendie sont limitées

Pin d'Alep au « stade rouge » près de Toulon Attaques massives favorisées par un climat sec et chaud (*Hicke et al.* 2012)

Une question controversée en Amérique du Nord : Plus de surfaces brûlées ?

-> Non, les années les plus sèches (*Hart et al.* 2015) Des feux plus intenses ?

-> Les modèles empiriques ne peuvent pas répondre

FIRETEC : simulations de feu après attaques de scolytes

Collaboration INRA – LANL – USDA Forest Service

- Peuplements de pins Ponderosa, en mélange avec des feuillus
- Trois niveaux de mortalité des pins observés : 20, 58, 100 %
- Les feuillus ne sont pas touchés par le scolyte du pin

Pins d'Alep au stade rouge

Sieg et al. 2016, submitted to EA

L'intensité du feu augmente avec les attaques de scolytes au stade rouge

Puissance du feu selon la mortalité des arbres (stade rouge)

- L'intensité augmente ~de manière linéaire avec le taux de mortalité
- L' accroissement est plus fort par vent fort
- Les effets de la mortalité et du vent sur la puissance du feu sont du même ordre

Sieg et al. 2016, submitted to EA

Effets du feu sur les arbres du peuplement attaqué

- Au stade rouge, les arbres morts sont plus largement consommés que les arbres vivants
- Impact du taux d'arbres scolytés sur la consommation par le feu des arbres survivant à l'attaque d'insectes ?
 - on calcule la consommation de combustible par le feu des arbres survivant
 - on la compare à la consommation dans le peuplement sain

Interactions attaques d'insectes – incendie

(impact du feu sur les arbres survivant au scolyte)

	Vent faible	Vent moyen	Vent Fort
Stade « Rouge », 20 %	2 (0)	3 (0)	1 (0)
Stade « Rouge », 58 %	53 (+++)	10 (+)	2 (0)
Stade « Rouge », 100 %	89 (+++)	12 (+)	2 (0)
Stade « Gris », 20 %	16 (+)	-15 (-)	-3 (0)
Stade « Gris », 58 %	-13 (-)	-20 ()	-9 (-)
Stade « Gris », 100 %	-15 (-)	-24 ()	-24 ()

Au stade rouge : • 53 à 89 % de dégâts en plus par vent faible, pour des taux d'infestation moyens à forts • Pas d'effet par vent fort
Au stade gris : • 10 à 25 % de réduction des dégâts • sauf pour un taux faible et un vent faible : aggravation de 16 %

Indépendance (0), synergie (+), ou antagonisme (-) des perturbations

Conclusions

- FIRETEC simule des comportements conformes aux observations
- Les simulations montrent des interactions complexes entre facteurs du feu ignorées par les modèles empiriques.
- Les applications de FIRETEC sont variées, mais limitées par :
 - la ressource calcul,
 - la représentation de l'atmosphère (données initiales et aux limites),
 - la disponibilité des données sur le combustible.
- Multiplier les simulations ?
 - méta-modèles (e.g. courbes de réponse de la vitesse du feu aux paramètres d'entrée)
- Simuler à plus grande échelle ?

couplage avec modèle atmosphérique méso-échelle (LANL)

Merci de votre attention

Simulation par vent fort

Propagation latérale (selon axe y) à partir du milieu du domaine

Par vent fort, les vitesses de montée sont similaires pour des largeurs de front différentes en bas de pente